2032 THE CRYSTAL STRUCTURE OF TRIHYDRAZINIUM HEXAFLUOROCHROMATE

$\mathrm{N}(3)$ have two shorter and two longer $\mathrm{N} \cdots \mathrm{F}$ contacts, whereas at $\mathrm{N}(5)$ all three $\mathrm{N} \cdots \mathrm{F}$ distances are almost equal. Around the NH_{3}^{+}parts of the pairs $\mathrm{N}(1)-\mathrm{N}(2)$ and $\mathrm{N}(3)-\mathrm{N}(4)$ the number of fluorine atoms at possible hydrogen bond distances is greater than three; this might allow the existence of bifurcated hydrogen bonds among some of them.

The two shortest nitrogen contacts between two different $\mathrm{N}_{2} \mathrm{H}_{5}^{+}$cations are: $\mathrm{N}(2) \cdots \mathrm{N}(5)=3 \cdot 09$, $\mathrm{N}(2) \cdots \mathrm{N}(4)=3 \cdot 10 \AA$. These may correspond to weak $\mathrm{NH} \cdots \mathrm{N}$ interactions.
As can be seen in Fig. 2 the fluorine atoms $\mathrm{F}(1)$, $F(2)$ and $F(5)$ are each linked to two different $\mathrm{N}_{2} \mathrm{H}_{5}^{+}$ cations, with one longer ($>2 \cdot 80 \AA$) and one shorter contact ($<2 \cdot 80 \AA$). Fluorine $\mathrm{F}(6)$ has two $\mathrm{N}_{2} \mathrm{H}_{5}^{+}$ions at nearly equal distances. In the vicinity of $F(3)$ there are three $\mathrm{N}_{2} \mathrm{H}_{5}^{+}$cations at rather long distances. The $\mathrm{F}(4)$ atom is surrounded by three cations with two short $\mathrm{N} \cdots \mathrm{F}$ distances and one longer.

By inspection of the powder diffraction patterns the analogous vanadium compound $\left(\mathrm{N}_{2} \mathrm{H}_{5}\right)_{3} \mathrm{VF}_{6}$, has been found to be isomorphous with $\left(\mathrm{N}_{2} \mathrm{H}_{5}\right)_{3} \mathrm{CrF}_{6}$.

References

Conant, J. W. \& Roof, R. B. (1970). Acta Cryst. B26, 1928.

Coppens, P. \& Hamilton, W. C. (1970). Acta Cryst. A 26, 71.

Hamilton, W. C. (1955). Acta Cryst. 8, 185.
Jönsson, P. G. \& Liminga, R. (1971). Acta Chem. Scand. 25, 1729.
International Tables for X-ray Crystallography (1962). Vol. III. Birmingham: Kynoch Press.

Hamilton, W. C. \& Ibers, J. A. (1968). Hydrogen Bonding in Solids. New York: Benjamin.
Kojić-Prodić, B., Matković, B. \& Šćavničar, S. (1971). Acta Cryst. B27, 635.
Kojić-Prodić, B., Š́ćavnićar, S. \& Matković, B. (1971). Acta Cryst. B27, 638.
Liminga, R. (1967). Acta Chem. Scand. 21, 1217.
Padmanabhan, V. M. \& Balasubramanian, R. (1967). Acta Cryst. 22, 532.
Pauling, L. (1960). The Nature of the Chemical Bond, 3rd ed. Ithaca: Cornell Univ. Press.
Slivnik, J., Pezdič, J. \& Sedej, B. (1967). Mh. Chem. 98, 204.

The Crystal Structure of [2.2]Metacyclophane-1,9-diene

By A. W. Hanson and M. Röhrl*
Biochemistry Laboratory, National Research Council of Canada, Ottawa, Canada K1A 0R6

(Received 3 February 1972)

Abstract

Crystals of the title compound, $\mathrm{C}_{16} \mathrm{H}_{12}$, are monoclinic, $P 2_{1} / a$, with $a=13 \cdot 25(1), b=5 \cdot 640(5), c=$ $7.350(5) \AA, \beta=95.39(5)^{\circ}, Z=2.833$ of a possible 931 independent reflexions in the range $\sin \theta / \lambda \leq 0.59$ were observed and measured diffractometrically. The crystal structure was determined by symbolic addition procedures and refined by block-diagonal least-squares methods to a final R index of 0.054 . The molecule has crystallographic inversion symmetry and non-crystallographic, but fairly precise, mirror symmetry. The phenyl rings are parallel, but displaced stepwise to avoid too close mutual contact, and they suffer severe boat-distortion. The distance between the carbon positions 8 and 16 of opposing phenyl rings is $2.57 \AA$. The length of the double bonds in the inter-phenyl bridges is 1.341 (3) \AA.

Introduction

The title compound (I) is one of a number of cyclophanes prepared by Professor Boekelheide and his associates. Many of these compounds are highly strained, and it is of interest to compare the chemical and geometrical consequences of such strain. (I) is somewhat unstable, undergoing (in solution) a lightmediated transformation to the corresponding dihydropyrene (II) and ultimately to pyrene (Mitchell \& Boekelheide, 1970). The structure analysis was under-

[^0]
(I)

(II)
taken in order to examine the molecular geometry which allows this transformation.

Experimental

Crystal data: F.W. 204.3, $V=547 \AA^{3}, \quad D_{m}=1 \cdot 24$ g. cm^{-3} (by flotation), $D_{x}=1.24 \mathrm{~g} . \mathrm{cm}^{-3}, \mu=5.4 \mathrm{~cm}^{-1}$ $(\mathrm{Cu} K \alpha)$. The wavelength assumed for $\mathrm{Cu} K \alpha_{1}$ was $1 \cdot 54050 \AA$. The space group was determined from precession and Weissenberg photographs. Systematic absences: $h 0 l$ for h odd, $0 k 0$ for k odd. Molecular symmetry: inversion centre.

The material supplied was recrystallized from a cyclo-hexane-benzene solution, yielding dark green plates. The specimen used for all measurements was a fragment of such a plate, of dimensions $0.2 \times 0.5 \times 0.7 \mathrm{~mm}$. This was mounted on a four-circle diffractometer with the longest dimension (corresponding to b) parallel to the φ axis. In order to reduce the decomposition which appeared to occur in air, it was enclosed in a thin-walled Lindemann-glass capillary. The relative intensities were measured in the $\theta-2 \theta$ scan mode (scans of 2° for $2 \theta<100^{\circ}, 3^{\circ}$ otherwise) using nickel-filtered $\mathrm{Cu} K \alpha$ radiation with pulse-height discrimination. Background intensities were measured at the beginning and end of each scan. The intensity of a standard reflexion was measured periodically, for use in subsequent scaling operations; a decrease in intensity of about 6% occurred during the course of the measurements. Reflexions were considered to be unobserved if their net counts were less than 7 (deca-) counts or $0 \cdot 15$ corresponding background count. In the range explored $\left(2 \theta<130^{\circ}\right)$, 833 of 931 accessible reflexions were observed above background. Absorption corrections were not applied.

Structure determination

The approximate structure was readily deduced by
symbolic-addition procedures, using the program of Ahmed, Hall, Pippy \& Huber (1966). The structure was then refined by block-diagonal least-squares methods, using the program of Ahmed et al. (1966). This program minimizes $\sum w \Delta F^{2}$. The weighting scheme, chosen to ensure reasonable constancy of $w \Delta F^{2}$ with F_{o} and $\sin ^{2} \theta$, was $w=w_{1} w_{2}$, where

$$
\begin{array}{rlrl}
w_{1} & =F_{o} / 3 & & \text { for } F_{o} \leq 3 \\
& =3 / F_{o} & & \text { for } F_{o}>3 \\
w_{2} & =1.87 \sin \theta & \text { for } \sin \theta<0.54 \\
& =1 & & \text { for } \sin \theta \geq 0.54
\end{array}
$$

(The nominal threshold value of F_{o} is 0.6 .)
The scattering-factor curve used for carbon was that of Hanson, Herman, Lea \& Skillman (1964), and for hydrogen, that of Stewart, Davidson \& Simpson (1965). The temperature factors of the carbon atoms were allowed to vary anisotropically, while those of the hydrogen atoms (initially located in a difference Fourier synthesis) were constrained to be isotropic. During refinement it became apparent that the strongest reflexions were suffering slightly from extinction,

Fig. 1. The thermal motion ellipsoids of 50% probability.

Table 1. Final atomic parameters and their e.s.d.'s
Quantities given are: fractional coordinates $\left(\times 10^{5}\right)$ for carbon atoms, $\left(\times 10^{3}\right)$ for hydrogen atoms [equivalent positions $\pm(x, y, z$; $\left.\left.\frac{1}{2}+x, \frac{1}{2}-y, z\right)\right] ; U_{i j}\left(\times 10^{4}\right) \AA^{2}$ for carbon atoms $\left\{\mathrm{T} . \mathrm{F} .=\exp \left[-2 \pi^{2}\left(U_{11} a^{* 2} h^{2}+\cdots+2 U_{12} a^{*} b^{*} h k+\cdots\right)\right] ;\right.$ r.m.s. displacements D_{i} along principal axes of vibration ellipsoids, in $\AA\left(\times 10^{2}\right)$; isotropic Debye-Waller factors for hydrogen atoms, in \AA^{2}.

	X	Y	2	U11	U12	013	U22	U23	133
C(1)	-11310(15)	30579(39)	12081(31)	$527111)$	98(9)	$90(10)$	5611121	-16(10)	741 (13)
C(2)	-2572(17)	31632(39)	22771(31)	728(13)	55(10)	16(11)	551(13)	-93(10)	641(13)
C(3)	6295(15)	15820(38)	21969(29)	$561(11)$	-57(9)	-72(9)	523 (11)	-40(10)	629(12)
C(4)	10840(16)	5590(45)	37899(30)	534(11)	-95(10)	-97(9)	759(15)	-8(11)	595(12)
C(5)	16973(15)	-14060(46)	36986(31)	465(10)	-22(10)	-124(9)	812(15)	160(12)	678(13)
C(6)	17722(13)	-25515(39)	20606(31)	383(9)	14(9)	-40(9)	567 (11)	148(11)	797(14)
$C(7)$	13211(13)	-15621(37)	4384(29)	388(9)	45(8)	11(8)	550(11)	41(9)	681(12)
C(8)	9006(14)	70911371	5273(28)	$443(10)$	-69(9)	-8(9)	518(11)	59(10)	656(12)

and these were corrected by the empirical method of Pinnock，Taylor \＆Lipson（1956）．The structure am－ plitudes of six reflexions were thereby increased by 1 to 6% ．In addition，some 22 weak reflexions，for which the calculated structure amplitudes were below the estimated threshold，were arbitrarily assigned zero weight．The final parameters are given in Table 1．In the last refinement cycle no parameter shift of a carbon atom exceeded one quarter of the corresponding e．s．d．

Assessment of analysis

The agreement between observed and calculated struc－ ture amplitudes（Table 2）is satisfactory，and there can be no doubt of the essential correctness of the proposed structure．The final agreement residual $\left(R=\sum|\Delta F| /\right.$ $\left.\sum\left|F_{o}\right|\right)$ is 0.054 ，for observed reflexions only．The final difference Fourier synthesis is，with two exceptions， reasonably featureless，with the residual density lying between the limits ± 0.17 e．\AA^{-3} ．The exceptions are two well－formed peaks，one of height $0.36 \mathrm{e} . \AA^{-3}$ and
with coordinates $0.024,-0.006,0.083$ ，and the other of height 0.23 e．\AA^{-3} ，at $0.005,0.132,0.244$ ．（These positions are indicated in Fig．2．）The first lies $0.02 \AA$ from the non－crystallographic mirror plane of the molecule， $0.70 \AA$ from the centre of symmetry，and $1 \cdot 1 \AA$ from the nearest carbon atom $[C(8)]$ ．The second lies $1.6 \AA$ from the first，and $0.8 \AA$ from $\mathrm{C}(3)$ ； its height and position may be perturbed by the proximity of this atom．A possible explanation of these anomalies is that a second molecular species is present as an impurity．As mentioned in the introduc－ tion，15，16－dihydropyrene（II）is known to be a reac－ tion product of I ．Moreover，I is said to be colourless， while solutions of II are deep green（Mitchell，et al．1970）． The deep green colour of both the original and recrys－ tallized specimen material is thus consistent with the presence of II．If II were to replace I at a small propor－ tion of sites，occupying roughly the same space，many atoms would overlap and would not be distinguished． However，the atoms terminating the central bond of II could be expected to be resolved near the centre of

Table 2．Observed and calculated structure amplitudes（ $\times 10$ ）
An asterisk denotes the theshold value of an unobserved reflexion．A minus sign preceding $10 F_{o}$ means that the reflexion was omitted from the refinement．

 ～た が 	\％ \square
 	－
W～－ox 	
 	\cdots

symmetry, as is the larger of the two extraneous peaks. The hypothesis of minor disorder is by no means demonstrated, but it seems plausible. The possible effects on the observed molecular dimensions of I should not be entirely overlooked.

The thermal motion of the structure is appreciable, and as the molecule seems likely to behave as a rigid body, an appropriate analysis was undertaken, using the procedure of Schomaker \& Trueblood (1968). The results, summarized in Table 3, are reasonably consistent with rigid-body behaviour, although no particularly interesting pattern emerges. The bond lengths have been appropriately corrected. Observed differences between chemically-equivalent bond lengths (4 pairs) are not significant either before or after the correction for thermal motion. This result suggests that the nominal e.s.d.'s are realistic.

Table 3. Rigid-body thermal parameters

$$
\begin{aligned}
& \mathbf{T}(\sigma \mathbf{T})=\left[\begin{array}{lrc}
393(12) & -14(11) & -71(9) \\
& 443(13) & 37(10) \\
& & 56(10)
\end{array}\right] \times 10^{-4 \AA^{2}} \\
& \mathbf{L}(\sigma \mathbf{L})=\left[\begin{array}{llc}
121(10) & -6(5) & 16(7) \\
& 82(7) & -70(6) \\
& & 99(12)
\end{array}\right] \times 10^{-1}\left(^{\circ}\right)
\end{aligned}
$$

(Centre of libration at molecular centre of symmetry.)

Principal axes of $\mathbf{T}:$ Eigenvalue	Direction cosines		
$0.060 \AA^{2}$	0.324	-0.044	-0.945
0.044	0.133	-0.987	0.092
0.037	0.937	0.155	0.314
Principal axes of L	Direction cosines		
Eigenvalue			
$16.7\left({ }^{\circ}\right)^{2}$	0.327	-0.615	0.717
11.6	0.943	0.264	-0.203
1.9	0.064	-0.743	-0.667^{*}

* 22.5° from normal to molecular plane of symmetry. R.m.s. discrepancy between observed and calculated $U_{i j}=$ $0.003 \AA^{2}$. All directions referred to the orthogonal axes $x^{\prime}| | \mathbf{a}, y^{\prime}| | \mathbf{b}, z^{\prime} \| \mathbf{c}^{*}$.

Structure

The molecular geometry is summarized in Tables 4 and 5, and in Figs. 1 and 2. The molecule has fairly precise $2 / m$ symmetry, and all bond lengths are close to their normal values. $C(8)$ and $C\left(8^{\prime}\right)$ are constrained to lie only $2.57 \AA$ apart; their proximity obviously favours the formation of a covalent bond, with conversion of I to II. The mutual repulsion of these atoms causes severe boat deformation of the phenyl rings. Judged by the criteria of distance and ring deformation, the repulsion is greater than has yet been observed in metacyclophanes (Hanson \& Huml, 1969). The repulsion must, of course, be balanced by tension in the bridges. Nevertheless there is no indication of any elongation of the double bonds; the observed length of 1.341 (3) \AA is not significantly different from the mean value for double bonds of 1.337 (6) \AA (Interna-
tional Tables for X-ray Crystallography, 1962) or the value of $1.339 \AA$ cited for trans-but-2-ene (Sutton, 1965). No significantly elongated double bond has yet been observed in cyclophane molecules (Coulter \& Trueblood, 1963; Hanson et al., 1969; Hanson, 1971). Single bonds in [2.2]cyclophanes are, in contrast, commonly found to have 'stretched' lengths of 1.57 to $1.59 \AA$, (Hanson, 1962; Mathew, 1968; Hanson \& Huml, 1971; Bernstein \& Trueblood, 1971; Hope, Bernstein \& Trueblood, 1972), compared with the nominal paraffinic value of 1.541 (3) \AA (International Tables for X-ray Crystallography, 1962) and a comparable value of $1 \cdot 531$ (4) \AA found in [3.3]paracyclophane (Gantzel \& Trueblood, 1965).

The hydrogen atoms have been located with a nominal precision of 0.02 to $0.03 \AA$. It is found that all are slightly displaced from positions of coplanarity with the three nearest carbon atoms (Table 5). For the

Table 4. Intramolecular distances and angles
$\mathrm{C}(1)-\mathrm{C}(2)$
$\mathrm{C}(2)-\mathrm{C}(3)$
$\mathrm{C}(1)-\mathrm{C}\left(7^{\prime}\right)$
$\mathrm{C}(3)-\mathrm{C}(4)$
$\mathrm{C}(6)-\mathrm{C}(7)$
$\mathrm{C}(4)-\mathrm{C}(5)$
$\mathrm{C}(5)-\mathrm{C}(6)$
$\mathrm{C}(3)-\mathrm{C}(8)$
$\mathrm{C}(7)-\mathrm{C}(8)$
$\mathrm{C}(8) \cdots \mathrm{C}\left(8^{\prime}\right)$
$\mathrm{C}(1)-\mathrm{H}(1)$
$\mathrm{C}(2)-\mathrm{H}(2)$
$\mathrm{C}(4)-\mathrm{H}(4)$
$\mathrm{C}(6)-\mathrm{H}(6)$
$\mathrm{C}(5)-\mathrm{H}(5)$
$\mathrm{C}(8)-\mathrm{H}(8)$
$\mathrm{C}(8) \cdots \mathrm{H}\left(8^{\prime}\right)$
$\left.\begin{array}{ccc}\begin{array}{c}\text { Distance } \\ \text { (uncorrected) }\end{array} & \begin{array}{c}\text { Distance } \\ \text { (corrected for } \\ \text { thermal motion) }\end{array} & \text { Mean } \\ \begin{array}{l}1.338(3) \AA \\ 1.481(3)\end{array} & \begin{array}{c}1.484 \\ 1.481\end{array} & \\ 1.477(3) & 1.482\end{array}\right\} \quad 1.483 \AA$

Angle

$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$126 \cdot 6(2)^{\circ}$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}\left(7^{\prime}\right)$	$125 \cdot 3(2)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(8)$	$121 \cdot 1(2)$
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}\left(1^{\prime}\right)$	$121 \cdot 5(2)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$119.9(2)$
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}\left(1^{\prime}\right)$	$119 \cdot 8(2)$
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(8)$	$117.8(2)$
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	$117 \cdot 7(2)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$120.2(2)$
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	$119.8(2)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$120.7(2)$
$\mathrm{C}(3)-\mathrm{C}(8)-\mathrm{C}(7)$	$119.9(2)$
$\mathrm{C}-\mathrm{C}-\mathrm{H}$	115 to 122°

hydrogen atoms attached to the phenyl rings the displacement is invariably towards the centre of the molecule (Fig. 2). Similar displacements have been observed for other cyclophanes (Coulter et al., 1963; Gantzel et al., 1965; Bernstein et al., 1971; Hope et al., 1972), and various explanations have been proposed. We find the effect easiest to understand in terms of the resis-

Table 5. Distances of some atoms from specified planes, and some dihedral angles
Specific planes are defined by atoms in bold type. Distances are in $\AA \times 10^{3}$.

Plane	Atoms and distances
1	$\begin{aligned} & \mathbf{C (3)}, \mathbf{0} ; \mathbf{C}(4), 0 ; \mathbf{C}(6), 0 ; \mathbf{C}(7), 0 ; \mathbf{C}(5),-79 ; \mathbf{C}(8), \\ & -226 ; \mathbf{C}\left(1^{\prime}\right), 479 ; \mathbf{C}(2), 498 . \end{aligned}$
2	$\mathbf{C (3) , ~ (0) ; ~ C (4) , ~ (0) ; ~ C (5) , ~ (0) ; ~ H (4) , ~} 72$.
3	C(5), (0); C(6), (0); C(7), (0); H(6), 57.
4	C(4), (0); C(5), (0); C(6), (0); H(5), 105.
5	$\mathbf{C}(4),(0) ; \mathbf{(8)},(0) ; \mathbf{C}(7),(0) ; \mathrm{H}(8), 196$.
6	$\mathbf{C}(1),(0) ; \mathbf{C (2) , ~ (0) ; ~ C (3) , ~ (0) ; ~} \mathrm{H}(2), 128$.
7	$\mathbf{C}(2),(0) ; \mathbf{C}(1),(0) ; \mathbf{C}\left(7^{\prime}\right),(0) ; \mathbf{H}(1), 77$.
Angles:	$\begin{aligned} & 1,4-6 \cdot 7^{\circ} \\ & 1,5-18 \cdot 8 \end{aligned}$

(a)

(b)

Fig. 2. The molecular geometry. The X 's indicate the positions of extraneous peaks in the difference map. (a) The view normal to the phenyl ring planes. Mean distances and angles are given in \AA and (${ }^{\circ}$). (b) The view normal to the molecular plane of symmetry. Mean hydrogen positions are shown for half the molecule.
tance to twisting of the aromatic bonds, a concept which can also be used to explain the asymmetrical boat deformation found for the aromatic rings of all [2.2]metacyclophanes (Hanson et al., 1969). Stereochemical requirements ensure that the bridge atoms will lie well out of the ring planes, necessitating some bending of the bond to the ring, and some rotation of the bridgehead atom. Efficient overlap of orbitals is maintained (i.e. torsional stresses are relieved) by a corresponding rotation of adjacent atoms. The hydrogen atoms thus tend to move to the same side of the ring planes as the bridge atoms. The greatest displacement ($0 \cdot 2 \AA$) is found for $\mathrm{H}(8)$, bringing this atom (in apparent defiance of van der Waals forces) to within $2.46 \AA$ of $\mathrm{C}\left(8^{\prime}\right)$. A corresponding displacement is not found when this hydrogen atom is replaced by a methyl group, as in 4,12-dimethyl[2.2]metacyclophane (Hanson, 1962). In this case the effect of the rotation of the ring carbon atom must be just balanced by that of increased van der Waals repulsion, as the relatively bulky methyl group is found to be accurately coplanar with the three nearest carbon atoms.

One further point may be noted concerning the positions of the hydrogen atoms. The distance $C(8)-$ $\mathrm{H}(8)$ at 1.07 (2) \AA is appreciably longer than the other C-H distances [range, 0.92-0.99 \AA; mean, 0.96 (1) \AA]. The increased distance may indicate steric constraint on the electron distribution of $\mathrm{H}(8)$.

The molecular packing is illustrated in Fig. 3. Inter-

Fig. 3. A part of the structure, viewed along b. Molecules in open outline are centred at $y=0$, others at $y=\frac{1}{2}$.
molecular contacts appear to be normal; the shortest (between hydrogen atoms) is $2 \cdot 68 \AA$.

Computer programs used in this work are those of Ahmed et al. (1966), Gantzel \& Trueblood (MGTLS, thermal motion analysis) and C. K. Johnson (ORTEP, thermal ellipsoid plot). The problem was suggested, and specimen material supplied by Professor V. Boekelheide.

References

Ahmed, F. R., Hall, S. R., Pippy, M. E. \& Huber, C. P. (1966). N.R.C. Crystallographic Programs for the IBM/ 360 System. IUCr World List of Crystallographic Computer Programs. 2nd ed. Appendix, p. 52.
Bernstein, J. \& Trueblood, K. N. (1971). Acta Cryst. B27, 2078.
Coulter, C. L. \& Trueblood, K. N. (1963). Acta Cryst. 16, 667.

Gantzel, P. K. \& Trueblood, K. N. (1965). Acta Cryst. 18, 958.
Hanson, A. W. (1962). Acta Cryst. 15, 956.
Hanson, A. W. (1971). Acta Cryst. B27, 197.

Hanson, A. W. \& Huml, K. (1969). Acta Cryst. B25, 2310.
Hanson, A. W. \& Huml, K. (1971). Acta Cryst. B27, 459.
Hanson, H. P., Herman, F., Lea, J. D. \& Skillman, S. (1964). Acta Cryst. 17, 1040.

Hope, H., Bernstein, J. \& Trueblood, K. N. (1972). Acta Cryst. B28, 1733.
International Tables for X-ray Crystallography (1962). Vol. III. Birmingham: Kynoch Press.

Johnson, C. K. (1965). ORTEP. Report ORNL-3794, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
Mathew, M. (1968). Acta Cryst. B24, 530.
Mathew, M. \& Hanson, A. W. (1968). Acta Cryst. B24, 1680.

Mitchell, R. H. \& Boekelheide, V. (1970). J. Amer. Chem. Soc. 92, 3510.
Pinnock, P. R., Taylor, C. A. \& Lipson, H. (1956). Acta Cryst. 9, 173.
Schomaker, V. \& Trueblood, K. N. (1968). Acta Cryst. B24, 63.
Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175.

Sutton, L. E. (1965). Tables of Interatomic Distances and Configuration in Molecules and Ions. Supplement 19561959, M112S. London: The Chemical Society.

Hydrogen Bond Studies. LXI.* An X-ray Diffraction Study of the Isotope Effect in Lithium Hydrogen Oxalate Monohydrate, $\mathrm{LiHC}_{2} \mathrm{O}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$

By J. O. Thomas \dagger
Institute of Chemistry, University of Uppsala, Box 531, S-751 21 Uppsala 1, Sweden

(Received 14 December 1971)
The crystal structures of the normal and deuterated forms of $\mathrm{LiHC}_{2} \mathrm{O}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$ have been determined from three-dimensional single-crystal X-ray diffraction data collected at room temperature using an automatic Stoe-Philips four-circle diffractometer. The unit cells in both structures are triclinic with the space group $P 1$ and containing one formula unit. The cell dimensions are, for $\mathrm{LiHC}_{2} \mathrm{O}_{4} \cdot \mathrm{H}_{2} \mathrm{O} \quad a=5 \cdot 056$ (1), $b=6.140(1), \quad c=3.411$ (1) $\AA, \quad \alpha=95.06(1), \quad \beta=98.93(1), \quad \gamma=78.57(1)^{\circ}, \quad V=102.36 \AA^{3}$ and for $\mathrm{LiDC}_{2} \mathrm{O}_{4} . \mathrm{D}_{2} \mathrm{O} \quad a=5.055$ (1), $b=6.138$ (1), $c=3.410$ (1) $\AA, \alpha=95.05$ (1), $\beta=98.62$ (1), $\gamma=78.57$ (1), $V=102 \cdot 34 \AA^{3}$. The undeuterated structure consists of infinite parallel chains of hydrogen oxalate ions joined by 2.490 (1) \AA asymmetric hydrogen bonds. These chains are linked transversely in the plane of the hydrogen oxalate ions by weaker hydrogen bonds, 2.702 (1) and 2.777 (1) \AA, via the water molecules and by $\mathrm{Li}^{+} \ldots \mathrm{O}$ electrostatic forces. The infinite planes so formed are in turn held together by further $\mathrm{Li}^{+} \ldots \mathrm{O}$ electrostatic forces. The structure is generally unchanged in the deuterated form except for an increase of $0.016(1) \AA$ in the shortest $\mathrm{O} \cdots \mathrm{O}$ hydrogen bond length. The conventional R values obtained from the refinement of the normal and deuterated compound are 0.024 and 0.026 respectively.

Introduction

Deuteration has long been recognized as a most useful device in hydrogen-bond studies, e.g. Robertson \&

[^1]Ubbelohde (1939). The majority of observations of the resulting 'isotope effect' have been based, however, on cell parameter measurements combined with the assumption that any isotope effect present would appear only as changes in the hydrogen-bond lengths. More recently a number of complete structural studies of normal and deuterated compounds have been made:

[^0]: * National Research Council of Canada postdoctorate fellow. Present address: Suddeutsche Kalkstickstoffwerke AG, 8223 Trostberg, West Germany.

[^1]: * Part LX: J. Chem. Phys. (1972). In the press.
 \dagger Visiting NATO/SRC (Great Britain) Research Fellow.

